Resources

Books

  • FastBook
  • Python Data Science Handbook - By Jake VanderPlas
  • Python for Data Analysis - By Wes McKinney | Book to learn about data handling with standard ML Libraries

Guides

  • https://www.interviewbit.com/system-design-interview-questions/amp/
  • https://www.promptingguide.ai/ Prompt Engineering
  • https://medium.com/marvelous-mlops/mlops-roadmap-2024-ff4216b8bc62 Mooc
  • The Missing Semester of Your CS Education (mit.edu) MIT Missing CS Semester + Lectures: Teaches how to use system utility tools like git, vim, other useful untaught methods for Machine Learning.
  • https://hepsoftwarefoundation.org/training/center.html Multiple Advance Tutorial/Guide Series. Recommended

Lectures

  • Cornell Machine Learning for Intelligent Systems 2018 36 Lectures and different Assignments https://www.youtube.com/watch?v=MrLPzBxG95I&list=PLl8OlHZGYOQ7bkVbuRthEsaLr7bONzbXS

References

Repositories

Good for Beginners

  • Matlab + Python | Guided GitHub - radekosmulski/10_neural_nets
  • https://www.instagram.com/p/C1W4QlzLBER/?igsh=MWFma29oM21qandnYg==
  • https://diegoinacio.github.io/machine-learning-notebooks-page/

Tutorials/Videos

Papers